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PRELIMINARIES



Linear Regression

Classical linear regression for N independent observations with K variables:
dependent variable estimated coefficients
v v K 7
vi = B0+ Bk Xk * e )
k=1 .
independent variablesT T random error term ~ N (u, o2)
Least square method to estimate coefficients:

N K 2
mﬁin Z [Yi — (Bo + Z BkXik)] (2)
i=1 k=1

Coefficients gy represents the explainable quantification of the relationship
between x, and y.
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Geographically weighted regression (GWR)

[Spatial heterogeneity] In a geographical context,
relationships between variables may not be constant. (Goodchild, 2004)

[Solution] Localized coefficients
coefficients specifically for location (uj, vi)

Ko
vi = Bo (i, vi) + > Bi (i, vi) xii + € (3)

k=1

with weighted least square for i-th observation

N
Br(TJ|n) E W [(uiv Vi), (unyvn)] . [ (50 ulr V1 E 61( uj, Vl) Xnk) (4)
Vi) 7
= k=1
o Tspatial weight for the observation at location (uy, vy)

Weights are generated by spatial kernel functions (e.g. bi-square)
Generate a better estimates than oridinary least square(OLS)
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1. Linear models are prone to be underfitting (Schell & Singh, 1997)

¢ inferior performance compared with more complex models
(e.g. decision tree, SVM, neural network)

[Solution]

¢ Geographically neural network weighted regression (Du et al., 2020)

e Spatial regression graph convolutional neural networks (Zhu et al., 2021)
However,

¢ sophisticated models cannot generate explicit coefficients for
relationships quantification [XGBoost + SHAP (Li, 2022)]

¢ hard to be evaluated via AIC score fairly (risk of being overfitting)
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2. Weighted least square may not achieve global optimal

e different from the global evaluation metric (e.g. AIC, RSS)
e each observation optimizes the local parameters independently

Develop a model that
¢ has higher model complexity to handle large volume data
e can generate explainable quantification of spatially varying relationships

* maintain the global optimization objective function
(consistent with the evaluation metrics)
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GWRBoost



Ensemble learning & Boosting algorithm

[step-wise optimization] Gradient descent
General model parameters
v ¥
0 =6;_1+ A6 F; =F,_1 + AF;

Lo (5)
:gi_l)\lJ] :F(X)il_)\laﬁ(F
0=0;_1

Global non-parametric model Fy(x)

(6)
00 OF

) =0; F=F;_1
gradient of § gradient of v |

[Additive model]

Base machine learning model

: OL(y, F(x)) _
flx) ~ —\ [6F(X)] _— =Y f(x) =F(x) (7)

Ensemble learning

Accumulate simple & weak base models to
¢ increase the model capacity
® generate better results
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GWRBoost

[Local] Localized additive model

Linear regression

Still linear form

M 1 M M K
vi = Filxy) = Z f(x;8™) = Zﬁ(l)n + ZZ@I{H (uj, vi) ik * € (8)
m=1 m=1 m=1 k=1
[Global]
F(x) = {F1,Fa,..,Fn} (9)

[Gradient boosting optimization]
Residuals from the previous step

N o
B () ~ Aoy T Ay =

T Geographically weighted regression

1Y -
A~N;[yi—F () | (10)

Learn the residuals instead of ground truth in a geographically weighted way
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GWRBoost

Algorithm T: GWRBoost

Data: D = {(Xl,yl,ul,vl),...,(XN,yN,uN,VN)} e |nitialize a GWR
Result: Model set 7M = {F}, .., FN} e Collect the residuals

1 forn=1toNdo .
* new GWR models are trained to

2 3h = argming 3 S8 wilyi — f41(xi))? . . )

1 ¢ " fit the residuals continuously
3 Fl fﬁé
4 end
5 form =2toMdo Residual passing
6 forn=1toNdo

- m—1/_\y

7 = A [yn — 1 (anl] , Capture global
8 B™ = arg MiNgm 3 > wi(rnffglr]n (1)) information by
o Froo= ol . i ; collecting
10 end residuals
n end gradually

Global S

1/21 Han Wang Peking University



Computation of AIC

likelihood function degree of freedom: trace of hat matrix #
¥

v
AIC=—2In(L£)+2k )]

mapping fromy toy

§=XB=X(X"X)'XTy= Ay (12)

M M M
Hym =HY I-H)"'yi=q HY MI-#"" by (13)
1 m=1 m=1

M
7= Fm=
m=1

m=

T hat matrix of M learners

AIC of complex models (e.g. decision tree, neural network) is hard to measure.
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EXPERIMENTAL EVALUATION



Synthetic data

y = Bo* Bixy + Poxo + fBax3 * ¢ (14)
B2 B3

s

1 2 3 4
Model OoLS GWR GWRBoost
RSS 1639.063 + 72.52 83.900 £+ 5.049 36.797 + 2.601
AIC 2385.642 + 27.65 773.374 + 36.050 225.512 + 42.061
AlCc 2385.739 + 27.65 839.926 4 35.383 274.817 + 41.207
R2 0.072 4+ 0.02 0.952 4+ 0.003 0.979 + 0.002
Adjusted R2 0.066 + 0.02 0.940 + 0.004 0.975 + 0.002
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Errors of coefficients estimates
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Figure: The distribution of residuals 0.4
e reduction of marginal fitting errors 03
¢ lower RMSE of coefficients estimation .
¢ |ower variance in error bound B, & A B

Simulation coefficents

higher performance in stronger
relationships
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Empirical case study — NYC education data

; Table: Selected indicators
¥ . .

Variable Explanation

¢ Dependent

3 mean_inc Mean income

Independent
subli8 Population under 18 years (count)
PER_PRV_SC Percentage of all students enrolled in private school

2 YOUTH_DROP Percentage of population age 16-19 that has dropped out of high school

v HS_DROP Percentage of population age over 25 that dropped out of high school

COL_DEGREE Percentage of population age over 25 that obtained at least a bachelors degree
SCHOOL_CT Number of schools (count)

Spatial distritbution of GWR residuals 0

Table: Comparative performance

/

Model oLS GWR GWRBoost
' RSS 982.206 388.626 261.478
AlC 4499669 3168.118 2289.994
AlCc 4499720 3315.637 2437.513
h R? 0.557 0.825 0.882
Adjusted R? 0.556 0.790 0.858
Moran’s | 0.333 0.066 -0.027

Spatial distritbution of GWRBoost residuals
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CONCLUSION



Conclusion

How it works? Why it works?

¢ |earn residuals instead of ground truth to maintain appropriate objectives
¢ collect global information by residual passing process

Conclusion: We proposed a framework that

¢ applies gradient boosting algorithm for optimization
increase the model complexity to maintain large volume data
* can be evaluated by AIC/AICc

¢ retains the ability to generate explainable & explicit quantifications for
spatially varying relationships

Further issues

[Computational overhead] - [Bandwidth selection] - [More ensemble learning]
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[Preprint] Please see this:

https://arxiv.org/abs/2212.05814

[Contacts] Feel free to contact me!

¢ Email: hanwgeek@gmail.com
e Twitter: @HanwGeek
¢ Linkedln: @HanwGeek
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