
Institute of RS and GIS, Peking University

GiST Build with
Pre-sorting Methods
Han Wang
hanwgeek@gmail.com

1 Preliminaries

2 Implementation in Postgres/PostGIS

3 Performance Test

4 Conclusion

Contents

2/20 Han Wang PostGIS

PRELIMINARIES

Definition
GiST(Generalized Search Tree) is a generalization data structure of a variety of
disk-based height-balanced search trees.

Structure

• A balanced tree of variable fanout between kM and M , 2
M ≤ k ≤ 1

2
• p is predicate, ptr is pointer to tuples
• Non-Leaf/Leaf node: (p, ptr)

Features

• Non-leaf node: p is true when instantiated with the values of any tuple
reachable from ptr

• Leaf node: p is true when instantiated with values from the indicated tuple

Basic Concepts of GiST

4/20 Han Wang PostGIS

• p: a predicate q : a query predicate
• E : an entry E = (p;ptr) P : a set of entries {E1 = (p1, ptr1),E2 = (p2, ptr2), . . . }

Methods

• Consistent(E, q): returns false if p ∩ q can be guaranteed unsatisfiable
• Union(P): returns some predicate r that holds for all tuples stored
• Penalty(E1,E2): returns a domain-specific penalty for inserting E2 into the
subtree rooted at E1

• PickSplit(P): given a set P of M + 1 entries, splits P into two sets of entries P1,
P2

• . . .

• Search(R, q): Search all tuples that satisfy q from root R
• Insert(R,E, l): new GiST resulting from insert of E at level l from root R

Key/Tree Methods of GiST

5/20 Han Wang PostGIS

Figure: R-tree(Wikipedia)

• B-tree
• B+-tree
• R-tree
• hB-tree
• RD-tree
• . . .

Applications

6/20 Han Wang PostGIS

IMPLEMENTATION

In PostgreSQL:

Building Strategies

1 Start with an empty index, and insert all tuples one by one.
2 Sort all input tuples, pack them into GiST leaf pages in the sorted order, and
create downlinks and internal pages as we go. This builds the index from
the bottom up, similar to how B-tree index build.
(With SortSupport API provided)

It is obvious that we have to define an "order"
for the tuples to sort them in advance

GiST Index Building in Postgres

8/20 Han Wang PostGIS

In PostGIS:

BOX2DF Structure

CREATE OPERATOR CLASS gist_geometry_ops_2d
DEFAULT FOR TYPE geometry USING GIST AS
STORAGE box2df
OPERATOR 1 << ,
...
FUNCTION 11 geometry_gist_sortsupport_2d(internal);

Sort support function

CREATE OR REPLACE FUNCTION geometry_gist_sortsupport_2d(internal)
RETURNS internal
AS '$libdir/postgis-3', 'gserialized_gist_sortsupport_2d'
LANGUAGE 'c' PARALLEL SAFE
COST 1;

Index for Geometry Objects in PostGIS

9/20 Han Wang PostGIS

Datum gserialized_gist_sortsupport_2d(PG_FUNCTION_ARGS) {
SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);

if (ssup->abbreviate)
{

ssup->comparator = hash_cmp;
ssup->abbrev_converter = hash_abbrev_convert;
ssup->abbrev_abort = hash_abbrev_abort;
ssup->abbrev_full_comparator = hash_abbrev_full_cmp;

}
else
{

ssup->comparator = hash_abbrev_full_cmp;
}
PG_RETURN_VOID();

}

Sort Support Function API

10/20 Han Wang PostGIS

static int hash_cmp(Datum a, Datum b, SortSupport ssup) {
if (a > b) return 1;
else if (a < b) return -1;
else return 0;

}

static Datum hash_abbrev_convert(Datum original, SortSupport ssup) {
BOX2DF *box = (BOX2DF *)original;
union floatuint {

uint32_t u;
float f;

};

union floatuint x, y;
x.f = (box->xmax + box->xmin) / 2;
y.f = (box->ymax + box->ymin) / 2;
return (Datum)uint32_hilbert(y.u, x.u);

}

Sort Support Function API

11/20 Han Wang PostGIS

Figure: Z-order(Wikipedia) Figure: Hilbert Curve(Squircular)

Order of Geometry Objects

12/20 Han Wang PostGIS

Figure: Hilbert Curve(Squircular)

• Infinite subdivision and
approximation

• Maintain the proximity that exists in
high dimensions in the 1-d case

Order of Geometry Objects

13/20 Han Wang PostGIS

Given a d ∗ n-bit number, split the index into n groups ij of d bits each

x0 = q (i0) = T0 ∗ q (i0)
x1 = t (i0) ∗ q (i1) = T1 ∗ q (i1)
x2 = t (i0) ∗ t (i1) ∗ q (i2) = T2 ∗ q (i2)
. . .
xn−1 = t (i0) ∗ t (i1) ∗ . . . ∗ t (in−2) ∗ q (in−1) = Tn−1 ∗ q (in−1)

• q : Function mapping d index bits to an orthant
• t : Function mapping d index bits to an element of the transformation group
• ∗ : The operator of that group
• Apply bit-wise opration like:

A = ((a & (a >> 4)) ^ (b & (b >> 4)));
B = ((a & (b >> 4)) ^ (b & ((a ^ b) >> 4)));
C ^= ((a & (c >> 4)) ^ (b & (d >> 4)));
D ^= ((b & (c >> 4)) ^ ((a ^ b) & (d >> 4)));

http://threadlocalmutex.com/?p=126

Fast Hash Function

14/20 Han Wang PostGIS

http://threadlocalmutex.com/?p=126

PERFORMANCE TEST

Search a small patch in a data area:

Index Building Time (ms) Plan Time (ms) Buffer Hit Number Excution Time (ms)
No index 0 0.05 834 13.1

Default GiST 450 0.05 12 0.016
Z-order Pre-sort GiST 130 0.05 15 0.046
Hilbert Pre-sort GiST 140 0.05 15 0.047

Traverse the data area with a small patch(Mean):

Index Building Time (ms) Plan Time (ms) Buffer Hit Number Excution Time (ms)
No index 0 0.042 834 12.96

Default GiST 450 0.057 13.52 0.016
Morton Pre-sort GiST 130 0.049 16.98 0.055
Hilbert Pre-sort GiST 140 0.050 15.37 0.046

Performance Test

16/20 Han Wang PostGIS

CONCLUSION

Conclusion

• Space filling curve hash function does improve the index building
performance

• But pre-sort index with hash functions leads to query performance loss

What’s Next

• To improve the query performance with an optimized hash function
• To implement a n-dimensional hash function

Conclusion

18/20 Han Wang PostGIS

THANKS

• Hellerstein, J. et al. Generalized Search Trees for Database Systems. VLDB
(1995).

• PostgreSQL GiST document: https://www.postgresql.org/docs/14/gist.html
• Postgres SortSupport: https://brandur.org/sortsupport
• Hilbert Curve Packing:

https://observablehq.com/@mourner/hilbert-curve-packing
• Fast Hilbert Hash Implementation: http://threadlocalmutex.com/?p=126

References

20/20 Han Wang PostGIS

https://www.postgresql.org/docs/14/gist.html
https://brandur.org/sortsupport
https://observablehq.com/@mourner/hilbert-curve-packing
http://threadlocalmutex.com/?p=126

	Preliminaries
	Implementation in Postgres/PostGIS
	Performance Test
	Conclusion

